What is a GPS



 Index & Page Links


 I URGE YOU to view the Web Page "TO GOD I PROMISE" & DO IT
I LOVE MY ATTORNEY - GREAT NEW SPACE PICTURES



What is My God's GPS
template-2-test
Home - What is a GPS - Stars & Galaxies - Contact
My Other Website:  I am Missing - Doors of Hope - Windows of Hope  template-2-test
Amazing Photos by Dave Sandford - View
HE CREATED
Amazing Close Up Pictures of
Moths - Beetle - Froggie - Squirrel

The Birth of a Chicken
GENEVA BIBLE 1594
I have an Original Copy

It's a BABY - NOT a FETUS


Our Mission to the Philippines
Special Videos Plus Music/Song
Inspiring and Touching
by: Nick Vujicic - Connie Talbot
The Sky Angel Cowboy

David Phelps - Lynda Randle
COMING SOON
WOW - Look at This
NESSIE and HIGH ROPES
Ness Lake Bible Camp
POEMS  "I Saw The Cross
Jesus Paid it All"
& Others
What God Speaks Into Our Hearts
Share Your Stories - email Tony

Oh Lord, I Want to Sing a New Song
                                by Katelyn

HE CREATED - Videos
Squirrel Bites Me - Fox
Two Bears - Baby Canary
Squirrel Hiding Seed
Hungry Squirrel - Deer Resting
It's 23 below Zero Cel.
Poor Squirrel is Hungry

More Winter Pictures 2013

My Favorite
SUNRISES - SUNSETS


Awesome Mexico Sunsets
Ice Flow - Looks Like Steambath
Nechako River in
Prince George


Click on Picture
More Winter Pictures Here
FUNNY-COOL VIDEOS
Join Me in a Snowy ride winter of 2011

The CAP of the bottle of Pellegrino popped
      Click on Picture
ME  
PARASAILING
                                          LOL

LINKS
Life Without Limbs
Nick Vujicic
Lynda Randle Ministries
Windows of Hope
Gospel for Asia
Highway of Tears
Bill Gaither Ministries


Click on
Pictures
To Enlarge
Go to NASA Website
For Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 


The 'Terrible Twos'

 


Aglo
 

 

 

 

 

 

 

 


God's
Perfect Sight

 

 

 

 

 

 

 

NASA Galaxies See Here


Young Stars Sculpt Gas with Powerful Outflows in the Small Magellanic Cloud

This is a Hubble Space Telescope view of one of the most dynamic and intricately detailed star-forming regions in space, located 210,000 light-years away in the Small Magellanic Cloud (SMC), a satellite galaxy of our Milky Way. At the center of the region is a brilliant star cluster called NGC 346. A dramatic structure of arched, ragged filaments with a distinct ridge surrounds the cluster.
A torrent of radiation from the cluster's hot stars eats into denser areas creating a fantasy sculpture of dust and gas. The dark, intricately beaded edge of the ridge, seen in silhouette by Hubble, is particularly dramatic. It contains several small dust globules that point back towards the central cluster, like windsocks caught in a gale.
Energetic outflows and radiation from hot young stars are eroding the dense outer portions of the star-forming region, formally known as N66, exposing new stellar nurseries. The diffuse fringes of the nebula prevent the energetic outflows from streaming directly away from the cluster, leaving instead a trail of filaments marking the swirling path of the outflows.

The NGC 346 cluster, at the center of this Hubble image, is resolved into at least three sub-clusters and collectively contains dozens of hot, blue, high-mass stars, more than half of the known high-mass stars in the entire SMC galaxy. A myriad of smaller, compact clusters is also visible throughout the region.

Some of these mini-clusters appear to be embedded in dust and nebulosity, and are sites of recent or ongoing star formation. Much of the starlight from these clusters is reddened by local dust concentrations that are the remnants of the original molecular cloud that collapsed to form N66.

An international team of astronomers, led by Dr. Antonella Nota of the Space Telescope Science Institute/European Space Agency in Baltimore, has been studying the Hubble data. In an upcoming issue of Astrophysical Journal Letters the team reports the discovery of a rich population of infant stars scattered around the young cluster NGC 346. These stars are likely to have formed 3 to 5 million years ago, together with the other stars in the NGC 346 cluster. These infant stars are particularly interesting as they have not yet contracted to the point where their interiors are hot enough to convert hydrogen to helium.

The Small and Large Magellanic Clouds are diffuse irregular galaxies visible to the naked eye in the southern hemisphere. They are two smallish satellite galaxies that orbit our own Milky Way Galaxy on a long slow journey inwards towards a future union with the Milky Way. Hubble has resolved many star formation regions in both of these neighboring galaxies that provide astronomers with laboratories other than our own Milky Way Galaxy to study how young stars interact with and shape their environments. The two satellites are named after the Portuguese seafarer Ferdinand Magellan (1480-1521) who sailed from Europe to Asia and is best known as the first person to lead an expedition to circumnavigate the globe.

This image of NGC 346 and its surrounding star formation region was taken with Hubble's Advanced Camera for Surveys in July 2004. Two broadband filters that contribute starlight from visible and near-infrared wavelengths (shown in blue and green, respectively) have been combined with light from the nebulosity that has passed though a narrow-band hydrogen-alpha filter (shown in red).

For more information, please contact: Antonella Nota, Space Telescope Science Institute/ESA, 3700 San Martin Drive, Baltimore, Md., (phone) 410-338-4520, (e-mail) nota@stsci.edu, or

Marco Sirianni, Space Telescope Science Institute/ESA, 3700 San Martin Drive, Baltimore, Md., (phone) 410-338-4810, (e-mail) sirianni@stsci.edu, or

Lars Lindberg Christensen, Hubble European Space Agency Information Center, Garching, Germany, (phone) +49-(0)89-3200-6306, (cell) +49-(0)173-3872-621, (e-mail) lars@eso.org, or

Ray Villard, Space Telescope Science Institute, Baltimore, Md., (phone) 410-338-4514, (e-mail) villard@stsci.edu



A Cosmic Holiday Ornament, Hubble-Style

'Tis the season for holiday decorating and tree-trimming. Not to be left out, astronomers using NASA's Hubble Space Telescope have photographed a festive-looking nearby planetary nebula called NGC 5189. The intricate structure of this bright gaseous nebula resembles a glass-blown holiday ornament with a glowing ribbon entwined.
Planetary nebulae represent the final brief stage in the life of a medium-sized star like our Sun. While consuming the last of the fuel in its core, the dying star expels a large portion of its outer envelope. This material then becomes heated by the radiation from the stellar remnant and radiates, producing glowing clouds of gas that can show complex structures, as the ejection of mass from the star is uneven in both time and direction.
A spectacular example of this beautiful complexity is seen in the bluish lobes of NGC 5189. Most of the nebula is knotty and filamentary in its structure. As a result of the mass-loss process, the planetary nebula has been created with two nested structures, tilted with respect to each other, that expand away from the center in different directions.
This double bipolar or quadrupolar structure could be explained by the presence of a binary companion orbiting the central star and influencing the pattern of mass ejection during its nebula-producing death throes. The remnant of the central star, having lost much of its mass, now lives its final days as a white dwarf. However, there is no visual candidate for the possible companion.
The bright golden ring that twists and tilts through the image is made up of a large collection of radial filaments and cometary knots. These are usually formed by the combined action of photo-ionizing radiation and stellar winds.
This image was taken with Hubble's Wide Field Camera 3 on July 6, 2012, in filters tuned to the specific colors of fluorescing sulfur, hydrogen, and oxygen atoms. Broad filters in the visible and near-infrared were used to capture the star colors.



Starry-Eyed Hubble Celebrates 20 Years of Awe and Discovery

Looking like an apparition rising from whitecaps of interstellar foam, the iconic Horsehead Nebula has graced astronomy books ever since its discovery over a century ago. The nebula is a favorite target for amateur and professional astronomers.In this new Hubble Space Telescope view, the nebula appears in a new light, as seen in infrared wavelengths. The nebula, shadowy in optical light, appears transparent and ethereal when seen in the infrared, represented here with visible shades. The rich tapestry of the Horsehead Nebula pops out against the backdrop of Milky Way stars and distant galaxies that are easily seen in infrared light.The Horsehead was photographed in celebration of the 23rd anniversary of the launch of Hubble aboard the space shuttle Discovery. Over its two decades of producing ground-breaking science, Hubble has benefited from a slew of upgrades, including the 2009 addition of a new imaging workhorse: the high-resolution Wide Field Camera 3 that was used to take this portrait of the Horsehead.
The backlit wisps along the Horsehead's upper ridge are being illuminated by Sigma Orionis, a young five-star system just off the top of the Hubble image. A harsh ultraviolet glare from one of these bright stars is slowly evaporating the nebula. Along the nebula's top ridge, two fledgling stars peek out from their now-exposed nurseries.
Gas clouds surrounding the Horsehead have already dissipated, but the tip of the jutting pillar contains a slightly higher density of hydrogen and helium, laced with dust. This casts a shadow that protects material behind it from being photo-evaporated, and a pillar structure forms. Astronomers estimate that the Horsehead formation has about five million years left before it too disintegrates.
The Horsehead Nebula is part of a much larger complex in the constellation Orion. Known collectively as the Orion Molecular Cloud, it also houses other famous objects such as the Great Orion Nebula (M42), the Flame Nebula, and Barnard's Loop. At about 1,500 light-years away, this complex is one of the nearest and most easily photographed regions in which massive stars are being formed.
Hubble's pairing of infrared sensitivity and unparalleled resolution offers a tantalizing hint of what the upcoming James Webb Space Telescope, set for launch in 2018, will be able to do.

Hubble Zooms in on Shrapnel from an Exploded Star

NASA's Hubble Space Telescope has unveiled in stunning detail a small section of the expanding remains of a massive star that exploded about 8,000 years ago.

Called the Veil Nebula, the debris is one of the best-known supernova remnants, deriving its name from its delicate, draped filamentary structures. The entire nebula is 110 light-years across, covering six full moons on the sky as seen from Earth, and resides about 2,100 light-years away in the constellation Cygnus, the Swan.

This view is a mosaic of six Hubble pictures of a small area roughly two light-years across, covering only a tiny fraction of the nebula's vast structure.

This close-up look unveils wisps of gas, which are all that remain of what was once a star 20 times more massive than our sun. The fast-moving blast wave from the ancient explosion is plowing into a wall of cool, denser interstellar gas, emitting light. The nebula lies along the edge of a large bubble of low-density gas that was blown into space by the dying star prior to its self-detonation.

The image shows an incredible array of structures and detail from the collision between the blast wave and the gas and dust that make up the cavity wall. The nebula resembles a crumpled bed sheet viewed from the side. The bright regions are where the shock wave is encountering relatively dense material or where the "bed sheet" ripples are viewed edge on.

In this image, red corresponds to the glow of hydrogen, green from sulfur, and blue from oxygen. The bluish features, outlining the cavity wall, appear smooth and arched in comparison to the fluffy green and red structures. The red glow is from cooler gas that was excited by the shock collision at an earlier time and has subsequently diffused into a more chaotic structure. A few thin, crisp-looking, red filaments arise after gas is swept into the shock wave at speeds of nearly 1 million miles an hour, so fast that it could travel from Earth to the moon in 15 minutes.

Astronomers are comparing these new images to images taken by Hubble in 1997. This comparison allows scientists to study how the nebula has expanded since it was photographed over 18 years ago



A Giant Hubble Mosaic of the Crab Nebula

This composite image of the Crab Nebula uses data from three of NASA's Great Observatories. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope's infrared image is in red. The size of the X-ray image is smaller than the others because the outwardly streaming higher-energy electrons emitting X-ray light radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star, which has the mass equivalent to the sun crammed into a rapidly spinning ball of neutrons twelve miles across, is the bright white dot in the center of the image.






Little Gem Nebula

This colorful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6,000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale.

When stars like the sun enter "retirement," they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud.

Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers.

Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionized oxygen and hydrogen. This image, while from the same camera, uses different filters to reveal a different view of the nebula.  

Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
Text credit: European Space Agency


Stormy Seas in Sagittarius

Some of the most breathtaking views in the Universe are created by nebulae — hot, glowing clouds of gas. This new NASA/ESA Hubble Space Telescope image shows the center of the Lagoon Nebula, an object with a deceptively tranquil name, in the constellation of Sagittarius. The region is filled with intense winds from hot stars, churning funnels of gas, and energetic star formation, all embedded within an intricate haze of gas and pitch-dark dust.

Image Credit: NASA, ESA, J. Trauger (Jet Propulson Laboratory)

Last Updated: Aug. 6, 2015
Editor: Sarah Loff
Lonely Galaxy Lost in Space

Most galaxies are clumped together in groups or clusters. A neighboring galaxy is never far away. But this galaxy, known as NGC 6503, has found itself in a lonely position, at the edge of a strangely empty patch of space called the Local Void.
The Local Void is a huge stretch of space that is at least 150 million light-years across. It seems completely empty of stars or galaxies. The galaxy’s odd location on the edge of this never-land led stargazer Stephen James O’Meara to dub it the “Lost-In-Space galaxy” in his 2007 book, Hidden Treasures.
NGC 6503 is 18 million light-years away from us in the northern circumpolar constellation of Draco. NGC 6503 spans some 30,000 light-years, about a third of the size of the Milky Way.
This Hubble Space Telescope image shows NGC 6503 in striking detail and with a rich set of colors. Bright red patches of gas can be seen scattered through its swirling spiral arms, mixed with bright blue regions that contain newly forming stars. Dark brown dust lanes snake across the galaxy’s bright arms and center, giving it a mottled appearance.
The Hubble Advanced Camera for Surveys data for NGC 6503 were taken in April 2003, and the Wide Field Camera 3 data were taken in August 2013.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.
Photo Credit: NASA, ESA, D. Calzetti (University of Massachusetts), H. Ford (Johns Hopkins University), and the Hubble Heritage Team
For images and more information about the Hubble Space Telescope, visit: http://www.nasa.gov/hubble or http://hubblesite.org/news/2015/23

Last Updated: July 30, 2015
Editor: Lynn Jenner



 God's Perfect Sight        





LINKS
World Renew

Mennonite Central
Committee


Click on Pictures
To Enlarge
Go to NASA Website
For Description


A Classic Beauty


 

 

 

 

 

 

 

 


Timeless Beauty

 

 

 


Cosmic Zoom Lens

 


Snowflakes in the
Universal Sky

 


Ghost Head Nebula

 

 

 

 

 

  

God's
P
erfect Sight